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In this note, we will look at the analysis of the call blocking probability
in a cellular system under the M/M/m/m assumption. We assume

(a) Blocked calls cleared

• No queuing for call requests.

• For every user who requests service, there is no setup time and the
user is given immediate access to a channel if one is available.

• If no channels are available, the requesting user is blocked without
access and is free to try again later.

(b) Calls arrive as determined by a Poisson process.

(c) Arrivals of requests are memoryless: all users, including blocked users,
may request a channel at any time.

(d) There are an infinite number of users (with finite overall request rate).

• The finite user results always predict a smaller likelihood of block-
ing. So, assuming infinite number of users provides a conservative
estimate.

(e) The duration of the time that a user occupies a channel is exponen-
tially distributed, so that longer calls are less likely to occur.

(f) There are m channels available in the trunking pool.

• For us, m = the number of channels for a cell or for a sector.
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M/M/m/m Assumption (Con’t) 
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The call request process is Poisson with rate  

The duration of calls are i.i.d. exponential r.v. with rate . 

If m = 3, this call will be blocked 

We want to find out what proportion of time the system has K = m. 

m = 

Figure 1: M/M/m/m Assumption

Some of the conditions above are drawn in Figure 1. Later on, we will try
to relax some of the assumptions above to make the analysis more realistic.
In Figure 1, we also show one important parameter of the system: K(t).
This is the number of used channels at time t. When K(t) < m, new call
can be made. When K(t) = m, new call request(s) will be blocked. So,
we can find the call blocking probability by looking at the value of K(t).
In particular, we want to find out the proportion of time the system has
K = m.

Poisson process and some probability concepts will be reviewed in Section
1. Most of the probability reviews will be put in footnotes so that they do
not interfere with the flow of the presentation.

1 Poisson Process

In this section, we consider an important random process called Poisson
process (PP). This process is a popular model for customer arrivals or calls
requested to telephone systems.

1.1. We start by picturing a Poisson Process as a random arrangement of
“marks” (denoted by “x”) on the time axis. These marks may indicate the
time that customers arrive or the time that call requests are made:
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In the language of “queuing theory”, the marks denote arrival times.

1.2. In this class, we will focus on one kind of Poisson process called ho-
mogeneous Poisson process. Therefore, from now on, when we say
“Poisson process”, what we mean is “homogeneous Poisson process”.

1.3. The first property of Poisson process that you should remember is that

there is only one parameter for Poisson process.

This parameter is the rate or intensity of arrivals (the average number of
arrivals per unit time.

• We used λ to denote this parameter.

• For homogeneous Poisson process, λ is a constant.

• For non-homogeneous Poisson process, λ is a function of time, say λ(t)

• Our λ is constant because we focus on homogeneous Poisson process.

1.4. How can λ, which is the only parameter, controls Poisson process?
The key idea is that the Poisson process is as random/unstructured as a
process can be. Therefore, if we consider many non-overlapping intervals on
the time axis, say interval 1, interval 2, and interval 3 below,

and count the number of arrivals N1, N2 and N3 in these intervals1.

1Note that the numbers N1, N2, and N3 are random. Because they are counting the number of arrivals,
we know that they can be any non-negative integers:

0, 1, 2, 3, . . . .

Because we don’t know their exact values, we describe them via the likelihood or probability that they
will take one of these possible values. For example, for N1, we describe it by

P [N1 = 0] , P [N1 = 1] , P [N1 = 2] , . . .

where P [N1 = k] is the probability that N1 takes the value k. Such list of numbers is a bit tedious. So,
we define a function

pN1
(k) = P [N1 = k] .

This function pN1(·) tells the probability that N1 will take a particular value (k). We call pN1 the probability
mass function (pmf) of N1. At this point, we don’t know much about pN1

(k) except that its values will be
between 0 and 1 and that

∞∑
k=0

pN1(k) = 1.

These two properties are the necessary and sufficient conditions for any pmf.
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Then, the numbers N1, N2 and N3 in our example above should be indepen-
dent2; for example, knowing the value of N1 does not tell us anything at all
about what N2 and N3 will be. This is what we are going to take as a vague
definition of the “complete randomness” of the Poisson process.

To summarize, now we have one more property of a Poisson process:

The number of arrivals in non-overlapping intervals are indepen-
dent.

1.5. Do we know anything else about N1, N2, and N3? Again, we have only
one parameter λ for a Poisson process. So, can we connect λ with N1, N2,
and N3?

Recall that λ is the average number of arrivals per unit time. So, if λ = 5
arrivals/hour, then we expect that N1, N2, and N3 should conform with this
λ, statistically.

Let’s first be more specific about the time duration of the intervals that
we have earlier. Suppose their lengths are T1, T2, and T3 respectively

Then, you should expect3 that

EN1 = λT1,

EN2 = λT2, and

EN3 = λT3.

2By saying that something are independent, we mean it in terms of probability. In particular, when we
say that N1 and N2 are independent, it means that

P [N1 = k and N2 = m]

(which is the probability that N1 = k and N2 = m) can be written as the product

pN1
(k)× pN2

(k)

3Recall that EN1 is the expectation (average) of the random variable N1. Formula-wise, we can calculate
EN1 from

EN1 =

∞∑
k=0

k × P [N1 = k] ;

that is the sum of the possible values of N1 weighted by the corresponding propabilities
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For example, suppose λ = 5 arrivals/hour and T1 = 2 hour. Then you
would see about λ × T1 = 10 arrivals during the first interval. Of course,
the number of arrivals is random. SO, this number 10 is an average or the
expected number, not the actual value.

To summarize, we now know one more property of a Poisson process:

For any interval of length T , the expected number of arrivals in
this interval is given by

EN = λT. (1)

1.1 Discrete-time (small-slot) approximation of a Poisson process

1.6. The next key idea is to consider a small interval:
Imagine dividing a time interval of length T into n equal slots.

Then each slot would be a time interval of duration δ = T/n. For example,
if T = 20 hours and n = 10, 000, then each slot would have length

δ =
T

n
=

20

10, 000
= 0.002 hour.

Why do we consider small interval? The key idea is that as the interval
becomes very small, then it is extremely unlikely that there will be more
than 1 arrivals during this small amount of time. This statement becomes
more accurate as we increase the value of n which decreases the length of
each interval ever further. What we are doing here is an approximation of
a continuous-time process by a discrete-time process.45

To summarize, we will consider the discrete-time approximation of the
(continuous-time) Poisson process. In such approximation, the time axis is
divided into many small time intervals (which we call “slots”).

When the interval is small enough, we can assume that at most 1
arrival occurs.

4You also do this when you plot a graph of any function f(x). You divide the x−axis by many (equally
spaced) values of x and then evaluate the values of the function at these values of x. You need to make
sure that the values of x used are “dense” enough such that no surprising change in the function f is
overlooked.

5If we wnat to be rigorous, we would have to bound the error from such approximation and show that
the error disappear as n→∞. We will not do that here.
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1.7. Let’s look at the small slots more closely. Here, we let N1 be the
number of arrivals in slot 1, N2 be the number of arrivals in slot 2, N3 be
the number of arrivals in slot 3, and so on as shown below.

Then, these Ni’s are all Bernoulli random variables because they can only
take the values 0 or 1. In which case, for their pmfs, we only need to specify
one value P [Ni = 1]. Of course, knowing this, we can calculate P [Ni = 0]
by P [Ni = 0] = 1− P [Ni = 1].

Recall that the average EX of any Bernoulli random variable X is simply
P [X = 1].6 So, if we know EX for Bernoulli random variable, then we know
right away that P [X = 1] = EX and P [X = 0] = 1− EX.

Now, it’s time to use what we learned about Poisson process. The
slots that we consider before are of length T/n. So, the random variables
N1, N2, N3, . . . share the same expected value

EN1 = EN2 = EN3 = · · · = λδ.

For example, with λ = 5, T = 20, and N = 10, 000, the expected number of
arrivals in a slot is

λδ = λ
T

n
= 0.01 arrivals.

Because these Ni’s are all Bernoulli random variables and because they
share the same expected value, we can conclude that they are identically
distributed; that is their pmf’s are all the same. Furthermore, because the
slots do not overlap, we also know that the Ni’s are independent. Therefore,

the Ni’s are i.i.d. Bernoulli random variables whose pmf’s are
given by

p1 = P [Ni = 1] = λδ and p0 = P [Ni = 0] = 1− λδ,

where δ is the length of each slot.

1.8. At this point, you can use MATLAB to generate a Poisson process with
arrival rate λ using discrete-time approximation. Here are the steps:

6For Bernoulli random variable X, the average is

EX = 0× P [X = 0] + 1× P [X = 1] = P [X = 1] .

For conciseness, we usually let p0 = P [X = 0] and p1 = P [X = 1]. Hence, EX = p1.
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(a) First, we fix the length T of the whole simulation. (For example, T = 20
hours.)

(b) Then, we divide T into n slots. (For example, n = 10, 000.)

(c) For each slot, only two cases can happen: 1 arrival or no arrival. So,
we generate Bernoulli random variable for each slot with p1 = λ×T/n.
(For example, if λ = 5 arrival/hr, then p1 = 0.01.)

To do this for n slots, we can use the command rand(1,n) < p1 or
binornd(1,p1,1,n).

1.9. Note that what we have just generated is exactly Bernoulli trials
whose success probability for each trial is p1 = λδ. In other words, a Poisson
process can be approximated by Bernoulli trials with success probability
p1 = λδ.

1.2 Properties of Poisson Processes

1.10. What we want to do next is to revisit the description of the number
of arrivals in a time interval. Now, we will NOT assume that length of the
time interval is short. In particular, let’s reconsider an interval of length T
below.

Let N be the number of arrivals during this time interval. In the picture
above, N = 4.

Again, we will start with a discrete-time approximation; we divide T
into n small slots of length δ = T

n . In the previous subsection, we know that
the number of arrivals in these intervals, denoted by N1, N2, . . . , Nn can be
well-approximated by i.i.d. Bernoulli with probability of having exactly one
arrival = λδ. (Of course, we need δ to be small for the approximation to be
precise.) The total number of arrivals during the original interval of length
T can be found by summing the values of the Ni’s:

N ≈ N1 +N2 + · · ·+Nn. (2)

You may recall, from introductory probability class, that
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(a) summation of n Bernoulli random variables with success probability p
gives a binomial(n, p) random variable7

and that

(b) the binomial(n, p) random variable whose n is large and p is small can
be well approximated by a Poisson random variable with parameter
α = np 8

Therefore, the pmf of the random variable N in (2) can be approximated
by a Poisson pmf whose parameter is

α = np1 = nλ
T

n
= λT.

This approximation gets more precise when n is large (δ is small). In fact,
in the limit as n→∞ (and hence δ → 0), the random variable N is P(λT ).
Recall that the expected value of P(α) is α. Therefore, λT is the expected
value of N . This agrees with what we have discussed before in (1).

In conclusion,

the number N of arrivals in an interval of length T is a Poisson
random variable with mean (parameter) λT

1.11. Now, to sum up what we have learned so far, the following is one of
the two main properties of a Poisson process

The number of arrivals N1, N2, N3, . . . during non-overlapping time
intervals are independent Poisson random variables with mean λ×
the length of the corresponding interval.

1.12. Another main property of the Poisson process, which we will state
without proof, is that

7X is a binomial random variable with size n ∈ N and parameter p ∈ (0, 1) if

pX (x) =

{ (
n
k

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n}

0, otherwise
(3)

We write X ∼ B(n, p) or X ∼ binomial(p). Observe that B(1, p) is Bernoulli with parameter p. Note also
that EX = np.

8X is a Poisson random variable with parameter α > 0 if

pX (k) =

{
e−α α

k

k! , k ∈ {0, 1, 2, . . .}
0, otherwise

We write X ∼ P (α) or Poisson(α). Note also that EX = α.
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The lengths of time between adjacent arrivals W1,W2,W3, . . . are
i.i.d. exponential9 random variables with mean 1/λ.

This property can be derived by looking at the discrete-time approximation
of the Poisson process. In the discrete-time version, the time until the next
arrival is geometric. In the limit, the geometric random variable becomes
exponential random variable. Both main properties of Poisson process are
shown in Figure 2. The small slot analysis (discrete-time approximation),
which can be used to prove the two main properties, is shown in Figure 3.Poisson Process 
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1 2 3 

N1 = 1 N2 = 2 N3 = 1 

The number of arrivals N1, N2, N3,…during non-overlapping time intervals  

are independent Poisson random variables with mean =   the length of the 

corresponding interval. 

The lengths of time between adjacent arrivals W1, W2, W3 ,… are i.i.d. 

exponential random variables with mean 1/. 

W1 W2 W3 W4 

Figure 2: Two main properties of a Poisson process

2 Derivation of the Erlang B Formula

The Erlang B formula along with the definitions of the parameters used in
it is shown in Figure 4.

9The exponential distribution is denoted by E (λ). An exponential random variable X is characterized
by its probability density function

fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0.
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Small Slot Analysis (Poisson Process) 
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(discrete time approximation) 
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Time 

In the limit, there is at most one arrival in any slot. The numbers of arrivals on the slots are 

i.i.d. Bernoulli random variables with probability p1 (= ) of exactly one arrivals where  is 

the width of individual slot. 

The total number of arrivals on n slots is a 

binomial random variable with parameter 

(n,p1) 

D1 
The number of slots between adjacent 

arrivals is a geometric random variable. 

In the limit, as the slot length gets smaller, geometric exponential 

binomial Poisson 

Figure 3: Small slot analysis (discrete-time approximation) of a Poisson process

Erlang B Formula 
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Figure 4: Erlang B Formula
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